Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - Chapter Review Exercises - Page 460: 64

Answer

$$ \ln|\sqrt{1+x^2}+x| -\frac{\sqrt{x^{2}+1}}{x}+C$$

Work Step by Step

Given $$ \int \frac{\sqrt{x^{2}+1}}{x^{2}} d x$$ Let $$x=\tan u\ \ \ \ \ \ \ \ \ \ \ \ dx=\sec^2 udu $$ Then \begin{align*} \int \frac{\sqrt{x^{2}+1}}{x^{2}} d x&=\int \frac{\sqrt{\tan^{2}u+1}}{\tan^{2}u} \sec^2 udu\\ &= \int \frac{\sqrt{\sec^{2}u}}{\tan^{2}u}(1+ \tan^2 u)du\\ &= \int (\sec u +\cot u\csc u)du\\ &=\ln|\sec u+\tan u| -\csc u+C\\ &= \ln|\sqrt{1+x^2}+x| -\frac{\sqrt{x^{2}+1}}{x}+C \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.