Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - Chapter Review Exercises - Page 460: 17

Answer

$$5 \ln |x-1|+\ln |x+1|+C$$

Work Step by Step

Given $$\int \frac{(6 x+4) d x}{x^{2}-1}$$ Since \begin{aligned} \frac{6 x+4}{x^{2}-1}&=\frac{A}{(x-1)}+\frac{B}{(x+1)}\\ 6 x+4&=A(x+1)+B(x-1) \end{aligned} Then \begin{align*} \text{at }\ x &= 1\ \ \ \ \ \ \ \ \ \ A=5\\ \text{at }\ x &=-1\ \ \ \ \ \ \ \ \ \ B=1 \end{align*} Hence \begin{aligned} \int \frac{6 x+4}{x^{2}-1} d x &=5 \int \frac{1}{(x-1)} d x+\int \frac{1}{(x+1)} d x \\ &=5 \ln |x-1|+\ln |x+1|+C \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.