Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - Chapter Review Exercises - Page 460: 54

Answer

$$\frac{1}{3} x^{3}(\ln x)^{2}-\frac{2}{9}\left[x^{3} \ln x-\frac{x^{3}}{3}\right]+C$$

Work Step by Step

Given $$ \int x^{2}(\ln x)^{2} d x$$Let \begin{align*} u&= (\ln x)^{2} \ \ \ \ \ \ \ \ \ dv=x^{2}dx\\ du&= 2(\ln x) \frac{1}{x}dx \ \ \ \ \ \ \ \ \ dv=\frac{1}{3}x^{3} \end{align*} Then \begin{align*} \int x^{2}(\ln x)^{2} d x&= \frac{1}{3}x^{3} (\ln x)^{2}-\frac{2}{3}\int x^2\ln xdx \end{align*} Let \begin{align*} u&=\ln x \ \ \ \ \ dv =x^2dx\\ du&=\frac{1}{x}dx \ \ \ \ \ v =\frac{1}{3}x^3 \end{align*} Then \begin{align*} \int x^2\ln xdx&=\frac{1}{3}x^3\ln x- \frac{1}{3}\int x^2 dx\\ & =\frac{1}{3}x^3\ln x- \frac{1}{9} x^3 \end{align*} Hence $$ \int x^{2}(\ln x)^{2} d x=\frac{1}{3} x^{3}(\ln x)^{2}-\frac{2}{9}\left[x^{3} \ln x-\frac{x^{3}}{3}\right]+C$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.