Answer
$$\frac{1}{4} \sinh ^{4} x+C$$
Work Step by Step
Given $$\int \sinh ^{3} x \cosh x d x$$
Let $$ u= \sinh u\ \ \ \ \ \ du =\cosh udu$$
Then
\begin{aligned}
\int \sinh ^{3} x \cosh x d x &=\int u^{3} d u \\
&=\frac{u^{4}}{4}+C \\
&=\frac{1}{4} \sinh ^{4} x+C
\end{aligned}