Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - Chapter Review Exercises - Page 460: 12

Answer

$$\frac{1}{6} \ln |x-1|-\frac{1}{6} \ln |x+5|+C$$

Work Step by Step

Given $$\int \frac{d x}{x^{2}+4 x-5} $$ Since \begin{aligned} \frac{1}{\left(x^{2}+4 x-5\right)} &=\frac{A}{(x-1)}+\frac{B}{(x+5)} \\ 1 &=A(x+5)+B(x-1) \end{aligned} \begin{align*} \text{at }\ x&= 1\ \ \ \ \ \ \ \ \ A=\frac{1}{6}\\ \text{at }\ x&= -5\ \ \ \ \ \ \ \ \ B=\frac{-1}{6} \end{align*} Then \begin{aligned} \int \frac{1}{\left(x^{2}+4 x-5\right)} d x &=\frac{1}{6} \int \frac{1}{(x-1)} d x-\frac{1}{6} \int \frac{1}{(x+5)} d x \\ &=\frac{1}{6} \ln |x-1|-\frac{1}{6} \ln |x+5|+C \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.