Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - Chapter Review Exercises - Page 460: 39

Answer

$$\frac{2}{\sqrt{a}}\tan^{-1}\frac{\sqrt{x}}{\sqrt{a}}+C,\ \ \ \ \ \ a\neq0$$ $$\frac{-2}{\sqrt{x}}+C,\ \ \ \ \ \ a=0$$

Work Step by Step

Given $$\int \frac{d x}{x^{3 / 2}+a x^{1 / 2}}$$ Let $$ x=u^2 \ \ \ \ \ \ dx=2udu$$ Then for $a\neq 0$ \begin{align*} \int \frac{d x}{x^{3 / 2}+a x^{1 / 2}}&=\int \frac{2ud u}{u^{3 }+a u}\\ &= \int \frac{2 d u}{u^{2 }+a }\\ &= \frac{2}{\sqrt{a}}\tan^{-1}\frac{u}{\sqrt{a}}+C\\ &= \frac{2}{\sqrt{a}}\tan^{-1}\frac{\sqrt{x}}{\sqrt{a}}+C \end{align*} For $a=0$ \begin{align*} \int \frac{d x}{x^{3 / 2}}&=\frac{-2}{\sqrt{x}}+C \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.