Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - Chapter Review Exercises - Page 460: 21

Answer

$$3\ln \left(2\right)-1$$

Work Step by Step

Given $$ \int_{0}^{1} \ln (4-2 x) d x$$ Let \begin{align*} u&=\ln (4-2x)\ \ \ \ \ \ \ \ \ \ \ \ \ dv= dx\\ du&= \frac{-1}{2-x}dx\ \ \ \ \ \ \ \ \ \ \ \ v=x \end{align*} Then \begin{align*} \int_{0}^{1} \ln (4-2 x) d x&=x\ln (4-2x)\bigg|_{0}^{1}+\int_{0}^{1}\frac{xdx}{2-x}\\ &=x\ln (4-2x)\bigg|_{0}^{1}-\int_{0}^{1}\frac{(2-x+2)dx}{2-x}\\ &=x\ln (4-2x)\bigg|_{0}^{1}-\int_{0}^{1}\left(1+\frac{2}{2-x}\right)dx\\ &= x\ln (4-2x) -x+2\ln |2-x| \bigg|_{0}^{1}\\ &= 3\ln \left(2\right)-1 \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.