Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - Chapter Review Exercises - Page 460: 50

Answer

$$\frac{x}{5 \sqrt{x^{2}+5}}+C$$

Work Step by Step

Given $$ \int \frac{d x}{\left(x^{2}+5\right)^{3 / 2}}$$ Let $$x=\sqrt{5}\tan u\ \ \ \ \ \ \ \ dx= \sqrt{5}\sec^2 udu $$ Then \begin{align*} \int \frac{d x}{\left(x^{2}+5\right)^{3 / 2}}&=\int \frac{\sqrt{5}\sec^2 udu}{\left(5\tan^{2}u+5\right)^{3 / 2}}\\ &= \int \frac{\sqrt{5}\sec^2 udu}{\left(5\sec^{2}u \right)^{3 / 2}}\\ &= \frac{1}{5}\int \cos udu\\ &=\frac{1}{5}\sin u+C\\ &= \frac{x}{5 \sqrt{x^{2}+5}}+C \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.