Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - Chapter Review Exercises - Page 460: 18

Answer

$$\frac{1}{4} \ln \left|\frac{3}{4}\right|+\frac{37}{480}$$

Work Step by Step

Given $$\int_{4}^{9} \frac{d t}{\left(t^{2}-1\right)^{2}}$$ Let $$t=\sec u\ \ \ \ \ \ \ dt=\sec u\tan udu $$ \begin{align*} \text{at }\ t&= 4\ \ \ \ \ \ \ u =\sec^{-1}(4)\\ \text{at }\ t&= 9\ \ \ \ \ \ \ u =\sec^{-1}(9) \end{align*} Then \begin{align*} \int_{4}^{9} \frac{d t}{\left(t^{2}-1\right)^{2}}&=\int_{\sec^{-1}(4)}^{\sec^{-1}(9)} \frac{\sec u\tan udu}{\left(\sec^{2}u-1\right)^{2}}\\ &=\int_{\sec^{-1}(4)}^{\sec^{-1}(9)} \frac{\sec u\tan udu}{\tan^{4}u}\\ &=\int_{\sec^{-1}(4)}^{\sec^{-1}(9)} \frac{\sec u du}{\tan^{3}u}\\ &=\int_{\sec^{-1}(4)}^{\sec^{-1}(9)}\csc u\cot^2udu\\ &=\int_{\sec^{-1}(4)}^{\sec^{-1}(9)}(\csc^3 u-\csc u)du\\ &=\frac{1}{4}\left(\frac{\tan ^2\left(\frac{u}{2}\right)}{2}-2\ln \left|\tan \left(\frac{u}{2}\right)\right|-\frac{1}{2\tan ^2\left(\frac{u}{2}\right)}\right)\bigg|_{\sec^{-1}(4)}^{\sec^{-1}(9)}\\ &=\frac{1}{4} \ln \left|\frac{3}{4}\right|+\frac{37}{480} \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.