Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - Chapter Review Exercises - Page 460: 36

Answer

$$\frac{1}{2} x \sqrt{x^{2}+9}+\frac{9}{2} \ln \left|\frac{x+\sqrt{x^{2}+9}}{3}\right|+C$$

Work Step by Step

Given $$\int \sqrt{x^{2}+9} d x$$ Let $$x=3\tan u\ \ \ \ \ \ \ dx=3\sec^2 udu $$ Then \begin{align*} \int \sqrt{x^{2}+9} d x&=\int \sqrt{9\tan^2 u+9} 3\sec^2 udu\\ &=\int \sqrt{9\sec^2 u} 3\sec^2 udu\\ &=9\int \sec^3udu \end{align*} Use $$\int \sec ^{n} u d u=\frac{1}{n-1} \tan u \sec ^{n-2} u+\frac{n-2}{n-1} \int \sec ^{n-2} u d u $$ Then $$\int \sec ^{3} u d u=\frac{1}{2} \sec u \tan u+\frac{1}{2} \ln |\sec u+\tan u|+C$$ Hence \begin{align*} \int \sqrt{x^{2}+9} d x&=\int \sqrt{9\tan^2 u+9} 3\sec^2 udu\\ &=\int \sqrt{9\sec^2 u} 3\sec^2 udu\\ &=9\int \sec^3udu\\ &=\frac{9}{2} \sec u \tan u+\frac{9}{2} \ln |\sec u+\tan u|+C\\ &=\frac{1}{2} x \sqrt{x^{2}+9}+\frac{9}{2} \ln \left|\frac{x+\sqrt{x^{2}+9}}{3}\right|+C \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.