Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - Chapter Review Exercises - Page 460: 53

Answer

$$ \frac{1}{2}\left(x^{2} \sin x^{2}+\cos x^{2}\right)+C$$

Work Step by Step

Given $$ \int x^{3} \cos \left(x^{2}\right) d x$$Let \begin{align*} z =x^2 \ \ \ \ \ \ \ \ \ dz=2xdx \end{align*} Then $$ \int x^{3} \cos \left(x^{2}\right) d x=\frac{1}{2}\int z \cos \left(z\right) dz$$ Let \begin{align*} u&=z \ \ \ \ \ dv = \cos \left(z\right) d z\\ du&=dz \ \ \ \ \ v = \sin \left(z\right) \end{align*} Then \begin{align*} \int x^{3} \cos \left(x^{2}\right) d x&=\frac{1}{2}\int z \cos \left(z\right) dz\\ &=\frac{1}{2} \left( z\sin z -\int \sin zdz\right)\\ &= \frac{1}{2} \left( z\sin z+ \cos z\right)+C\\ &= \frac{1}{2}\left(x^{2} \sin x^{2}+\cos x^{2}\right)+C \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.