Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - Chapter Review Exercises - Page 460: 7

Answer

$$-\frac{1}{\sqrt{x^{2}-1}}-\sec ^{-1} x+C$$

Work Step by Step

Given $$\int \frac{d x}{x\left(x^{2}-1\right)^{3 / 2}} $$ Let $$ x=\sec u \ \ \ \ \ \ \ dx=\sec u\tan u du$$ Then \begin{align*} \int \frac{d x}{x\left(x^{2}-1\right)^{3 / 2}} &= \int \frac{\sec u\tan u du}{\sec u \left(\sec^{2}u-1\right)^{3 / 2}} \\ &= \int \frac{ \tan u du}{ \left(\tan^{2}u\right)^{3 / 2}} \\ &=\int \cot^2u du\\ &=\int (\csc^2u-1)du\\ &=-\cot u -u+C\\ &=-\frac{1}{\sqrt{x^{2}-1}}-\sec ^{-1} x+C \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.