Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - Chapter Review Exercises - Page 460: 57

Answer

$$x \ln \left(x^{2}+9\right)-2 x+6 \tan ^{-1}\left(\frac{x}{3}\right)+C$$

Work Step by Step

Given $$\int \ln \left(x^{2}+9\right) d x$$ Let \begin{align*} u&= \ln \left(x^{2}+9\right)\ \ \ \ \ \ \ \ \ \ \ \ dv=dx\\ du&=\frac{2x}{x^2+9} \ \ \ \ \ \ \ \ \ \ \ \ \ v=x \end{align*} Then \begin{align*} \int \ln \left(x^{2}+9\right) d x&= x \ln \left(x^{2}+9\right)-2 \int \frac{x^{2}}{x^{2}+9} d x\\ &=x \ln \left(x^{2}+9\right)-2 \int\left[1-\frac{9}{x^{2}+9}\right]\\ &= x \ln \left(x^{2}+9\right)-2 x+6 \tan ^{-1}\left(\frac{x}{3}\right)+C \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.