Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - Chapter Review Exercises - Page 460: 33

Answer

$\frac{3}{8}\sqrt 2+\frac{1}{8}\ln({\sqrt {2}-1})$

Work Step by Step

$\int{cot^{2}x(csc^{3}x})dx$ = $\int{(csc^{2}x-1)csc^{3}x}dx$ = $\int{csc^{5}x}dx$ - $\int{csc^{3}x}dx$ use the reduction formula for csc^{m}x $\int{cot^{2}x(csc^{3}x})dx$ = $[-\frac{1}{4}cotx(csc^{3}x)+\frac{3}{4}\int{csc^{3}x}dx]-\int{csc^{3}x}dx$ = $[-\frac{1}{4}cotx(csc^{3}x)-\frac{1}{4}\int{csc^{3}x}dx]$ = $-\frac{1}{4}cotx(csc^{3}x)-\frac{1}{4}(-\frac{1}{2}cotx(cscx)+\frac{1}{2}\int{cscx}dx)$ = $-\frac{1}{4}cotx(csc^{3}x)+\frac{1}{8}cotx(cscx)-\frac{1}{8}\ln|{cscx-cotx|}+C$ $\int_{\frac{\pi}{4}}^{\frac{\pi}{2}}{cot^{2}x(csc^{3}x})dx$ = $-\frac{1}{4}cotx(csc^{3}x)+\frac{1}{8}cotx(cscx)-\frac{1}{8}\ln|{cscx-cotx|}|_{\frac{\pi}{4}}^{\frac{\pi}{2}}$ = $-\frac{1}{4}cot{\frac{\pi}{2}}(csc^{3}{\frac{\pi}{2}})+\frac{1}{8}cot{\frac{\pi}{2}}(csc{\frac{\pi}{2}})-\frac{1}{8}\ln|{csc{\frac{\pi}{2}}-cot{\frac{\pi}{2}}|}$+$\frac{1}{4}cot{\frac{\pi}{4}}(csc^{3}{\frac{\pi}{4}})-\frac{1}{8}cot{\frac{\pi}{4}}(csc{\frac{\pi}{4}})+\frac{1}{8}\ln|{csc{\frac{\pi}{4}}-cot{\frac{\pi}{4}}|}$ = $\frac{3}{8}\sqrt 2+\frac{1}{8}\ln({\sqrt {2}-1})$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.