Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 14 - Calculus of Vector-Valued Functions - Chapter Review Exercises - Page 753: 24

Answer

The minimum speed occurs at $t = \frac{7}{2}$: $||{\bf{r}}'\left( {\frac{7}{2}} \right)|| = \sqrt {1 + 2{\rm{e}}} $

Work Step by Step

We have ${\bf{r}}\left( t \right) = \left( {t,{{\rm{e}}^{t - 3}},{{\rm{e}}^{4 - t}}} \right)$. So, ${\bf{r}}'\left( t \right) = \left( {1,{{\rm{e}}^{t - 3}}, - {{\rm{e}}^{4 - t}}} \right)$ The speed is $||{\bf{r}}'\left( t \right)|| = \sqrt {\left( {1,{{\rm{e}}^{t - 3}}, - {{\rm{e}}^{4 - t}}} \right)\cdot\left( {1,{{\rm{e}}^{t - 3}}, - {{\rm{e}}^{4 - t}}} \right)} $ $ = \sqrt {1 + {{\rm{e}}^{2\left( {t - 3} \right)}} + {{\rm{e}}^{2\left( {4 - t} \right)}}} $ Write $f\left( t \right) = ||{\bf{r}}'\left( t \right)|| = \sqrt {1 + {{\rm{e}}^{2\left( {t - 3} \right)}} + {{\rm{e}}^{2\left( {4 - t} \right)}}} $. We find the critical point of $f\left( t \right)$ by solving the equation $f'\left( t \right) = 0$: $f'\left( t \right) = \frac{{2{{\rm{e}}^{2\left( {t - 3} \right)}} - 2{{\rm{e}}^{2\left( {4 - t} \right)}}}}{{2\sqrt {1 + {{\rm{e}}^{2\left( {t - 3} \right)}} + {{\rm{e}}^{2\left( {4 - t} \right)}}} }} = \frac{{{{\rm{e}}^{2\left( {t - 3} \right)}} - {{\rm{e}}^{2\left( {4 - t} \right)}}}}{{\sqrt {1 + {{\rm{e}}^{2\left( {t - 3} \right)}} + {{\rm{e}}^{2\left( {4 - t} \right)}}} }}$ The equation $f'\left( t \right) = 0$ gives ${{\rm{e}}^{2\left( {t - 3} \right)}} - {{\rm{e}}^{2\left( {4 - t} \right)}} = 0$. So, $2\left( {t - 3} \right) = 2\left( {4 - t} \right)$ $4t = 14$, ${\ \ \ }$ $t = \frac{7}{2}$ The solution is $t = \frac{7}{2}$. Since the speed function is ever increasing for $t > 0$, the speed at $t = \frac{7}{2}$ is minimum. Substituting $t = \frac{7}{2}$ in $||{\bf{r}}'\left( t \right)||$ we obtain the minimum speed: $||{\bf{r}}'\left( {\frac{7}{2}} \right)|| = \sqrt {1 + {{\rm{e}}^{2\left( {\frac{7}{2} - 3} \right)}} + {{\rm{e}}^{2\left( {4 - \frac{7}{2}} \right)}}} = \sqrt {1 + 2{\rm{e}}} $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.