Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 14 - Calculus of Vector-Valued Functions - Chapter Review Exercises - Page 753: 23

Answer

The parametrization: ${\bf{r}}\left( t \right) = \left( {5\cos 4t,5\sin 4t,\frac{{10}}{\pi }t} \right)$ The arc length parametrization: ${{\bf{r}}_1}\left( s \right)=$ $\left( {5\cos \left( {\frac{4}{{\sqrt {400 + {{\left( {10/\pi } \right)}^2}} }}s} \right),5\sin \left( {\frac{4}{{\sqrt {400 + {{\left( {10/\pi } \right)}^2}} }}s} \right),\frac{{10}}{{\pi \sqrt {400 + {{\left( {10/\pi } \right)}^2}} }}s} \right)$

Work Step by Step

A helix of height $20$ cm that makes four full rotations over a circle of radius $5$ cm can be parametrized by ${\bf{r}}\left( t \right) = \left( {5\cos at,5\sin at,bt} \right)$, ${\ \ }$ for $0 \le t \le 2\pi $ Since it makes four full rotations, so $a\cdot2\pi = 8\pi $, ${\ \ }$ $a=4$ Since the height is $20$, so $b\cdot2\pi = 20$, ${\ \ }$ $b = \frac{{10}}{\pi }$ Thus, ${\bf{r}}\left( t \right) = \left( {5\cos 4t,5\sin 4t,\frac{{10}}{\pi }t} \right)$. Finding an arc length parametrization: Step 1. Evaluate the arc length integral: $s = \mathop \smallint \limits_0^t ||{\bf{r}}'\left( u \right)||{\rm{d}}u$ We have ${\bf{r}}\left( t \right) = \left( {5\cos 4t,5\sin 4t,\frac{{10}}{\pi }t} \right)$. So, ${\bf{r}}'\left( t \right) = \left( { - 20\sin 4t,20\cos 4t,\frac{{10}}{\pi }} \right)$ $||{\bf{r}}'\left( t \right)|| = \sqrt {400{{\sin }^2}4t + 400{{\cos }^2}4t + {{\left( {\frac{{10}}{\pi }} \right)}^2}} = \sqrt {400 + {{\left( {\frac{{10}}{\pi }} \right)}^2}} $ Thus, $s = \sqrt {400 + {{\left( {\frac{{10}}{\pi }} \right)}^2}} \mathop \smallint \limits_0^t {\rm{d}}u = t\sqrt {400 + {{\left( {\frac{{10}}{\pi }} \right)}^2}} $ Step 2. Write $s = g\left( t \right) = t\sqrt {400 + {{\left( {\frac{{10}}{\pi }} \right)}^2}} $. The inverse is $t = {g^{ - 1}}\left( s \right)$: $t = \frac{s}{{\sqrt {400 + {{\left( {10/\pi } \right)}^2}} }}$ Step 3. Substituting the replacement of $t$ in ${\bf{r}}\left( t \right)$ we get the arc length parametrization: ${{\bf{r}}_1}\left( s \right)=$ $\left( {5\cos \left( {\frac{4}{{\sqrt {400 + {{\left( {10/\pi } \right)}^2}} }}s} \right),5\sin \left( {\frac{4}{{\sqrt {400 + {{\left( {10/\pi } \right)}^2}} }}s} \right),\frac{{10}}{{\pi \sqrt {400 + {{\left( {10/\pi } \right)}^2}} }}s} \right)$ for $0 \le s \le 2\pi \sqrt {400 + {{\left( {\frac{{10}}{\pi }} \right)}^2}} $.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.