Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 14 - Calculus of Vector-Valued Functions - Chapter Review Exercises - Page 753: 15

Answer

$\mathop \smallint \limits_0^3 \left( {4t + 3,{t^2}, - 4{t^3}} \right){\rm{d}}t = \left( {27,9, - 81} \right)$

Work Step by Step

$\mathop \smallint \limits_0^3 \left( {4t + 3,{t^2}, - 4{t^3}} \right){\rm{d}}t = \left( {\mathop \smallint \limits_0^3 \left( {4t + 3} \right){\rm{d}}t,\mathop \smallint \limits_0^3 {t^2}{\rm{d}}t, - \mathop \smallint \limits_0^3 4{t^3}{\rm{d}}t} \right)$ Evaluate $\mathop \smallint \limits_0^3 \left( {4t + 3} \right){\rm{d}}t$ $\mathop \smallint \limits_0^3 \left( {4t + 3} \right){\rm{d}}t = \left( {2{t^2} + 3t} \right)|_0^3 = 27$ Evaluate $\mathop \smallint \limits_0^3 {t^2}{\rm{d}}t$ $\mathop \smallint \limits_0^3 {t^2}{\rm{d}}t = \frac{1}{3}{t^3}|_0^3 = 9$ Evaluate $ - \mathop \smallint \limits_0^3 4{t^3}{\rm{d}}t$ $ - \mathop \smallint \limits_0^3 4{t^3}{\rm{d}}t = - {t^4}|_0^3 = - 81$ Thus, $\mathop \smallint \limits_0^3 \left( {4t + 3,{t^2}, - 4{t^3}} \right){\rm{d}}t = \left( {27,9, - 81} \right)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.