Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 14 - Calculus of Vector-Valued Functions - Chapter Review Exercises - Page 753: 21

Answer

The length of path: $s = 2\sqrt {13} $

Work Step by Step

We have ${\bf{r}}\left( t \right) = \left( {\sin 2t,\cos 2t,3t - 1} \right)$, for $1 \le t \le 3$. So, ${\bf{r}}'\left( t \right) = \left( {2\cos 2t, - 2\sin 2t,3} \right)$ $||{\bf{r}}'\left( t \right)|| = \sqrt {\left( {2\cos 2t, - 2\sin 2t,3} \right)\cdot\left( {2\cos 2t, - 2\sin 2t,3} \right)} $ $ = \sqrt {4{{\cos }^2}2t + 4{{\sin }^2}2t + 9} $ $ = \sqrt {13} $ By Theorem 1 of Section 14.3, the length of path is given by $s = \mathop \smallint \limits_1^3 ||{\bf{r}}'\left( t \right)||{\rm{d}}t$ $s = \sqrt {13} \mathop \smallint \limits_1^3 {\rm{d}}t = 2\sqrt {13} $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.