Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 14 - Calculus of Vector-Valued Functions - Chapter Review Exercises - Page 753: 16

Answer

$\mathop \smallint \limits_0^\pi \left( {\sin \theta ,\theta ,\cos 2\theta } \right){\rm{d}}\theta = \left( {2,\frac{{{\pi ^2}}}{2},0} \right)$

Work Step by Step

$\mathop \smallint \limits_0^\pi \left( {\sin \theta ,\theta ,\cos 2\theta } \right){\rm{d}}\theta = \left( {\mathop \smallint \limits_0^\pi \sin \theta {\rm{d}}\theta ,\mathop \smallint \limits_0^\pi \theta {\rm{d}}\theta ,\mathop \smallint \limits_0^\pi \cos 2\theta {\rm{d}}\theta } \right)$ Evaluate $\mathop \smallint \limits_0^\pi \sin \theta {\rm{d}}\theta $ $\mathop \smallint \limits_0^\pi \sin \theta {\rm{d}}\theta = - \cos \theta |_0^\pi = 2$ Evaluate $\mathop \smallint \limits_0^\pi \theta {\rm{d}}\theta $ $\mathop \smallint \limits_0^\pi \theta {\rm{d}}\theta = \frac{1}{2}{\theta ^2}|_0^\pi = \frac{{{\pi ^2}}}{2}$ Evaluate $\mathop \smallint \limits_0^\pi \cos 2\theta {\rm{d}}\theta $ $\mathop \smallint \limits_0^\pi \cos 2\theta {\rm{d}}\theta = \frac{1}{2}\sin 2\theta |_0^\pi = 0$ Thus, $\mathop \smallint \limits_0^\pi \left( {\sin \theta ,\theta ,\cos 2\theta } \right){\rm{d}}\theta = \left( {2,\frac{{{\pi ^2}}}{2},0} \right)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.