Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 14 - Calculus of Vector-Valued Functions - Chapter Review Exercises - Page 754: 25

Answer

The initial speed is ${v_0} \simeq 67.28$ m/s.

Work Step by Step

Let ${v_0}$ denote the initial speed of the projectile. So, we have the initial velocity: ${\bf{v}}\left( 0 \right) = \left( {{v_0}\cos 60^\circ ,{v_0}\sin 60^\circ } \right) = \left( {\frac{1}{2}{v_0},\frac{1}{2}\sqrt 3 {v_0}} \right)$ Let the initial position be ${\bf{r}}\left( 0 \right) = \left( {0,0} \right)$. The only force that acts on the projectile is the gravitational force. So, the acceleration due to gravity is ${\bf{a}}\left( t \right) = - 9.8{\bf{j}}$ $m/{s^2}$. Step 1. Find the velocity vector We have ${\bf{v}}\left( t \right) = \smallint {\bf{a}}\left( t \right){\rm{d}}t = \smallint \left( {0, - 9.8} \right){\rm{d}}t = \left( {0, - 9.8t} \right) + {{\bf{c}}_0}$ The initial condition ${\bf{v}}\left( 0 \right) = \left( {\frac{1}{2}{v_0},\frac{1}{2}\sqrt 3 {v_0}} \right)$ gives $\left( {\frac{1}{2}{v_0},\frac{1}{2}\sqrt 3 {v_0}} \right) = \left( {0,0} \right) + {{\bf{c}}_0}$ ${{\bf{c}}_0} = \left( {\frac{1}{2}{v_0},\frac{1}{2}\sqrt 3 {v_0}} \right)$ Thus, ${\bf{v}}\left( t \right) = \left( {0, - 9.8t} \right) + \left( {\frac{1}{2}{v_0},\frac{1}{2}\sqrt 3 {v_0}} \right)$ ${\bf{v}}\left( t \right) = \left( {\frac{1}{2}{v_0},\frac{1}{2}\sqrt 3 {v_0} - 9.8t} \right)$ Step 2. Find the position vector We have ${\bf{r}}\left( t \right) = \smallint {\bf{v}}\left( t \right){\rm{d}}t = \smallint \left( {\frac{1}{2}{v_0},\frac{1}{2}\sqrt 3 {v_0} - 9.8t} \right){\rm{d}}t$ ${\bf{r}}\left( t \right) = \left( {\frac{1}{2}{v_0}t,\frac{1}{2}\sqrt 3 {v_0}t - 4.9{t^2}} \right) + {{\bf{c}}_1}$ The initial condition ${\bf{r}}\left( 0 \right) = \left( {0,0} \right)$ gives $\left( {0,0} \right) = \left( {0,0} \right) + {{\bf{c}}_1}$ ${{\bf{c}}_1} = \left( {0,0} \right)$ Thus, ${\bf{r}}\left( t \right) = \left( {\frac{1}{2}{v_0}t,\frac{1}{2}\sqrt 3 {v_0}t - 4.9{t^2}} \right)$ Step 3. Solve for ${t_0}$ From previous result, we obtain the position vector: ${\bf{r}}\left( t \right) = \left( {\frac{1}{2}{v_0}t,\frac{1}{2}\sqrt 3 {v_0}t - 4.9{t^2}} \right)$ The projectile lands $400$ m away, so $\frac{1}{2}{v_0}t = 400$ ${\ \ }$ and ${\ \ }$ $\frac{1}{2}\sqrt 3 {v_0}t - 4.9{t^2} = 0$ The first equation gives $t = \frac{{800}}{{{v_0}}}$. Substituting it in the second equation gives $\frac{1}{2}\sqrt 3 {v_0}\left( {\frac{{800}}{{{v_0}}}} \right) - 4.9{\left( {\frac{{800}}{{{v_0}}}} \right)^2} = 0$ $400\sqrt 3 = \frac{{4.9 \times {{800}^2}}}{{{v_0}^2}}$ ${v_0}^2 = \frac{{4.9 \times {{800}^2}}}{{400\sqrt 3 }} = 4526.43$ So, the initial speed is ${v_0} \simeq 67.28$ m/s.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.