Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 14 - Calculus of Vector-Valued Functions - Chapter Review Exercises - Page 753: 11

Answer

The derivative at $t=3$: $\frac{d}{{dt}}\left( {6{{\bf{r}}_1}\left( t \right) - 4{{\bf{r}}_2}\left( t \right)} \right){|_{t = 3}} = \left( {0, - 8, - 10} \right)$

Work Step by Step

$\frac{d}{{dt}}\left( {6{{\bf{r}}_1}\left( t \right) - 4{{\bf{r}}_2}\left( t \right)} \right) = 6{{\bf{r}}_1}'\left( t \right) - 4{{\bf{r}}_2}'\left( t \right)$ The derivative at $t=3$: $\frac{d}{{dt}}\left( {6{{\bf{r}}_1}\left( t \right) - 4{{\bf{r}}_2}\left( t \right)} \right){|_{t = 3}} = 6{{\bf{r}}_1}'\left( 3 \right) - 4{{\bf{r}}_2}'\left( 3 \right)$ $ = 6\left( {0,0,1} \right) - 4\left( {0,2,4} \right)$ $\frac{d}{{dt}}\left( {6{{\bf{r}}_1}\left( t \right) - 4{{\bf{r}}_2}\left( t \right)} \right){|_{t = 3}} = \left( {0, - 8, - 10} \right)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.