Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 14 - Calculus of Vector-Valued Functions - Chapter Review Exercises - Page 753: 4

Answer

Vector parametrization: ${\bf{r}}\left( \theta \right) = \left( {1 - 3\cos \theta - 8\sin \theta ,3\cos \theta ,8\sin \theta } \right)$, ${\ \ \ }$ for $0 \le \theta \le 2\pi $

Work Step by Step

Consider the elliptical cylinder ${\left( {\frac{y}{3}} \right)^2} + {\left( {\frac{z}{8}} \right)^2} = 1$. It can be parametrized by $\left( {y,z} \right) = \left( {3\cos \theta ,8\sin \theta } \right)$, ${\ \ }$ for $0 \le \theta \le 2\pi $ Notice that it satisfied the equation ${\left( {\frac{y}{3}} \right)^2} + {\left( {\frac{z}{8}} \right)^2} = 1$. Substituting $y = 3\cos \theta $ and $z = 8\sin \theta $ in $x + y + z = 1$ gives $x + 3\cos \theta + 8\sin \theta = 1$ $x = 1 - 3\cos \theta - 8\sin \theta $ Thus, the parametrization of the intersection of the plane $x + y + z = 1$ and the elliptical cylinder ${\left( {\frac{y}{3}} \right)^2} + {\left( {\frac{z}{8}} \right)^2} = 1$ is given by ${\bf{r}}\left( \theta \right) = \left( {1 - 3\cos \theta - 8\sin \theta ,3\cos \theta ,8\sin \theta } \right)$, ${\ \ \ }$ for $0 \le \theta \le 2\pi $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.