Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 14 - Calculus of Vector-Valued Functions - Chapter Review Exercises - Page 753: 14

Answer

The derivative at $t=3$: $\frac{d}{{dt}}\left( {{{\bf{r}}_1}\left( t \right) \times {{\bf{r}}_2}\left( t \right)} \right){|_{t = 3}} = \left( {3, - 3,2} \right)$

Work Step by Step

$\frac{d}{{dt}}\left( {{{\bf{r}}_1}\left( t \right) \times {{\bf{r}}_2}\left( t \right)} \right) = \left( {\frac{d}{{dt}}{{\bf{r}}_1}\left( t \right)} \right) \times {{\bf{r}}_2}\left( t \right) + {{\bf{r}}_1}\left( t \right) \times \left( {\frac{d}{{dt}}{{\bf{r}}_2}\left( t \right)} \right)$ $ = {{\bf{r}}_1}'\left( t \right) \times {{\bf{r}}_2}\left( t \right) + {{\bf{r}}_1}\left( t \right) \times {{\bf{r}}_2}'\left( t \right)$ The derivative at $t=3$: $\frac{d}{{dt}}\left( {{{\bf{r}}_1}\left( t \right) \times {{\bf{r}}_2}\left( t \right)} \right){|_{t = 3}} = {{\bf{r}}_1}'\left( 3 \right) \times {{\bf{r}}_2}\left( 3 \right) + {{\bf{r}}_1}\left( 3 \right) \times {{\bf{r}}_2}'\left( 3 \right)$ $ = \left| {\begin{array}{*{20}{c}} {\bf{i}}&{\bf{j}}&{\bf{k}}\\ 0&0&1\\ 1&1&0 \end{array}} \right| + \left| {\begin{array}{*{20}{c}} {\bf{i}}&{\bf{j}}&{\bf{k}}\\ 1&1&0\\ 0&2&4 \end{array}} \right|$ $ = - {\bf{i}} + {\bf{j}} + 4{\bf{i}} - 4{\bf{j}} + 2{\bf{k}}$ $ = 3{\bf{i}} - 3{\bf{j}} + 2{\bf{k}}$ $\frac{d}{{dt}}\left( {{{\bf{r}}_1}\left( t \right) \times {{\bf{r}}_2}\left( t \right)} \right){|_{t = 3}} = \left( {3, - 3,2} \right)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.