Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 14 - Calculus of Vector-Valued Functions - Chapter Review Exercises - Page 753: 20

Answer

${\bf{r}}\left( t \right) = \left( {\frac{1}{{12}}{t^4} - \frac{1}{2}{t^2} - t + 1,\frac{1}{6}{t^3} + \frac{1}{2}{t^2} + t,\frac{1}{{20}}{t^5}} \right)$

Work Step by Step

Find the velocity vector: ${\bf{v}}\left( t \right) = \smallint {\bf{r}}{\rm{''}}\left( t \right){\rm{d}}t = \smallint \left( {{t^2} - 1,t + 1,{t^3}} \right){\rm{d}}t$ $ = \left( {\frac{1}{3}{t^3} - t,\frac{1}{2}{t^2} + t,\frac{1}{4}{t^4}} \right) + {{\bf{c}}_0}$ The initial condition ${\bf{v}}\left( 0 \right) = \left( { - 1,1,0} \right)$ gives $\left( { - 1,1,0} \right) = {{\bf{c}}_0}$ Thus, ${\bf{v}}\left( t \right) = \left( {\frac{1}{3}{t^3} - t,\frac{1}{2}{t^2} + t,\frac{1}{4}{t^4}} \right) + \left( { - 1,1,0} \right)$ ${\bf{v}}\left( t \right) = \left( {\frac{1}{3}{t^3} - t - 1,\frac{1}{2}{t^2} + t + 1,\frac{1}{4}{t^4}} \right)$ Find the position vector: ${\bf{r}}\left( t \right) = \smallint {\bf{v}}\left( t \right){\rm{d}}t = \smallint \left( {\frac{1}{3}{t^3} - t - 1,\frac{1}{2}{t^2} + t + 1,\frac{1}{4}{t^4}} \right){\rm{d}}t$ $ = \left( {\frac{1}{{12}}{t^4} - \frac{1}{2}{t^2} - t,\frac{1}{6}{t^3} + \frac{1}{2}{t^2} + t,\frac{1}{{20}}{t^5}} \right) + {{\bf{c}}_1}$ The initial condition ${\bf{r}}\left( 0 \right) = \left( {1,0,0} \right)$ gives $\left( {1,0,0} \right) = {{\bf{c}}_1}$ Thus, ${\bf{r}}\left( t \right) = \left( {\frac{1}{{12}}{t^4} - \frac{1}{2}{t^2} - t,\frac{1}{6}{t^3} + \frac{1}{2}{t^2} + t,\frac{1}{{20}}{t^5}} \right) + \left( {1,0,0} \right)$ Hence, the solution is ${\bf{r}}\left( t \right) = \left( {\frac{1}{{12}}{t^4} - \frac{1}{2}{t^2} - t + 1,\frac{1}{6}{t^3} + \frac{1}{2}{t^2} + t,\frac{1}{{20}}{t^5}} \right)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.