Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 14 - Calculus of Vector-Valued Functions - Chapter Review Exercises - Page 753: 13

Answer

The derivative at $t=3$: $\frac{d}{{dt}}\left( {{{\bf{r}}_1}\left( t \right)\cdot{{\bf{r}}_2}\left( t \right)} \right){|_{t = 3}} = 2$

Work Step by Step

$\frac{d}{{dt}}\left( {{{\bf{r}}_1}\left( t \right)\cdot{{\bf{r}}_2}\left( t \right)} \right) = \left( {\frac{d}{{dt}}{{\bf{r}}_1}\left( t \right)} \right)\cdot{{\bf{r}}_2}\left( t \right) + {{\bf{r}}_1}\left( t \right)\cdot\left( {\frac{d}{{dt}}{{\bf{r}}_2}\left( t \right)} \right)$ $ = {{\bf{r}}_1}'\left( t \right)\cdot{{\bf{r}}_2}\left( t \right) + {{\bf{r}}_1}\left( t \right)\cdot{{\bf{r}}_2}'\left( t \right)$ The derivative at $t=3$: $\frac{d}{{dt}}\left( {{{\bf{r}}_1}\left( t \right)\cdot{{\bf{r}}_2}\left( t \right)} \right){|_{t = 3}} = {{\bf{r}}_1}'\left( 3 \right)\cdot{{\bf{r}}_2}\left( 3 \right) + {{\bf{r}}_1}\left( 3 \right)\cdot{{\bf{r}}_2}'\left( 3 \right)$ $ = \left( {0,0,1} \right)\cdot\left( {1,1,0} \right) + \left( {1,1,0} \right)\cdot\left( {0,2,4} \right)$ $\frac{d}{{dt}}\left( {{{\bf{r}}_1}\left( t \right)\cdot{{\bf{r}}_2}\left( t \right)} \right){|_{t = 3}} = 2$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.