Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 14 - Calculus of Vector-Valued Functions - Chapter Review Exercises - Page 753: 9

Answer

$\frac{d}{{dt}}{{\rm{e}}^t}\left( {1,t,{t^2}} \right) = {{\rm{e}}^t}\left( {1,t + 1,{t^2} + 2t} \right)$

Work Step by Step

$\frac{d}{{dt}}{{\rm{e}}^t}\left( {1,t,{t^2}} \right) = \left( {\frac{d}{{dt}}{{\rm{e}}^t}} \right)\left( {1,t,{t^2}} \right) + {{\rm{e}}^t}\frac{d}{{dt}}\left( {1,t,{t^2}} \right)$ $ = {{\rm{e}}^t}\left( {1,t,{t^2}} \right) + {{\rm{e}}^t}\left( {0,1,2t} \right)$ $\frac{d}{{dt}}{{\rm{e}}^t}\left( {1,t,{t^2}} \right) = {{\rm{e}}^t}\left( {1,t + 1,{t^2} + 2t} \right)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.