Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 14 - Calculus of Vector-Valued Functions - Chapter Review Exercises - Page 753: 17

Answer

The particle's location at $t=2$: ${\bf{r}}\left( 2 \right) = \left( {3,3,\frac{{16}}{3}} \right)$

Work Step by Step

Find the position vector: ${\bf{r}}\left( t \right) = \smallint {\bf{v}}\left( t \right){\rm{d}}t = \smallint \left( {1,t,2{t^2}} \right){\rm{d}}t = \left( {t,\frac{1}{2}{t^2},\frac{2}{3}{t^3}} \right) + {\bf{c}}$, where ${\bf{c}}$ is a constant vector. At $t=0$, we have ${\bf{r}}\left( 0 \right) = \left( {1,1,0} \right)$. So, $\left( {1,1,0} \right) = {\bf{c}}$ Thus, ${\bf{r}}\left( t \right) = \left( {t,\frac{1}{2}{t^2},\frac{2}{3}{t^3}} \right) + \left( {1,1,0} \right)$ ${\bf{r}}\left( t \right) = \left( {t + 1,\frac{1}{2}{t^2} + 1,\frac{2}{3}{t^3}} \right)$ The particle's location at $t=2$: ${\bf{r}}\left( 2 \right) = \left( {3,3,\frac{{16}}{3}} \right)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.