Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 14 - Calculus of Vector-Valued Functions - Chapter Review Exercises - Page 753: 19

Answer

${\bf{r}}\left( t \right) = \left( {2{t^2} - \frac{8}{3}{t^3} + t,{t^4} - \frac{1}{6}{t^3} + 1} \right)$

Work Step by Step

Find the velocity vector: ${\bf{v}}\left( t \right) = \smallint {\bf{r}}{\rm{''}}\left( t \right){\rm{d}}t = \smallint \left( {4 - 16t,12{t^2} - t} \right){\rm{d}}t$ $ = \left( {4t - 8{t^2},4{t^3} - \frac{1}{2}{t^2}} \right) + {{\bf{c}}_0}$ The initial condition ${\bf{v}}\left( 0 \right) = \left( {1,0} \right)$ gives $\left( {1,0} \right) = {{\bf{c}}_0}$ Thus, ${\bf{v}}\left( t \right) = \left( {4t - 8{t^2},4{t^3} - \frac{1}{2}{t^2}} \right) + \left( {1,0} \right)$ ${\bf{v}}\left( t \right) = \left( {4t - 8{t^2} + 1,4{t^3} - \frac{1}{2}{t^2}} \right)$ Find the position vector: ${\bf{r}}\left( t \right) = \smallint {\bf{v}}\left( t \right){\rm{d}}t = \smallint \left( {4t - 8{t^2} + 1,4{t^3} - \frac{1}{2}{t^2}} \right){\rm{d}}t$ $ = \left( {2{t^2} - \frac{8}{3}{t^3} + t,{t^4} - \frac{1}{6}{t^3}} \right) + {{\bf{c}}_1}$ The initial condition ${\bf{r}}\left( 0 \right) = \left( {0,1} \right)$ gives $\left( {0,1} \right) = {{\bf{c}}_1}$ Thus, ${\bf{r}}\left( t \right) = \left( {2{t^2} - \frac{8}{3}{t^3} + t,{t^4} - \frac{1}{6}{t^3}} \right) + \left( {0,1} \right)$ Hence, ${\bf{r}}\left( t \right) = \left( {2{t^2} - \frac{8}{3}{t^3} + t,{t^4} - \frac{1}{6}{t^3} + 1} \right)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.