Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 14 - Calculus of Vector-Valued Functions - Chapter Review Exercises - Page 753: 2

Answer

Please see the sketch attached.

Work Step by Step

We evaluate ${{\bf{r}}_1}\left( \theta \right) = \left( {\theta ,\cos \theta } \right)$ and ${{\bf{r}}_2}\left( \theta \right) = \left( {\cos \theta ,\theta } \right)$ for $\theta = 0,\frac{\pi }{4},\frac{\pi }{2},\frac{{3\pi }}{4},...,2\pi $ and list these points in the following tables: $\begin{array}{*{20}{c}} \theta &{{{\bf{r}}_1}\left( \theta \right) = \left( {\theta ,\cos \theta } \right)}\\ 0&{\left( {0,1} \right)}\\ {\frac{\pi }{4}}&{\left( {\frac{\pi }{4},\frac{1}{{\sqrt 2 }}} \right)}\\ {\frac{\pi }{2}}&{\left( {\frac{\pi }{2},0} \right)}\\ {\frac{{3\pi }}{4}}&{\left( {\frac{{3\pi }}{4}, - \frac{1}{{\sqrt 2 }}} \right)}\\ \pi &{(\pi , - 1\} }\\ {\frac{{5\pi }}{4}}&{\left( {\frac{{5\pi }}{4}, - \frac{1}{{\sqrt 2 }}} \right)}\\ {\frac{{3\pi }}{2}}&{\left( {\frac{{3\pi }}{2},0} \right)}\\ {\frac{{7\pi }}{4}}&{\left( {\frac{{7\pi }}{4},\frac{1}{{\sqrt 2 }}} \right)}\\ {2\pi }&{\left( {2\pi ,1} \right)} \end{array}\begin{array}{*{20}{c}} {{{\bf{r}}_2}\left( \theta \right) = \left( {\cos \theta ,\theta } \right)}\\ {\left( {1,0} \right)}\\ {\left( {\frac{1}{{\sqrt 2 }},\frac{\pi }{4}} \right)}\\ {\left( {0,\frac{\pi }{2}} \right)}\\ {\left( { - \frac{1}{{\sqrt 2 }},\frac{{3\pi }}{4}} \right)}\\ {\left( { - 1,\pi } \right)}\\ {\left( { - \frac{1}{{\sqrt 2 }},\frac{{5\pi }}{4}} \right)}\\ {\left( {0,\frac{{3\pi }}{2}} \right)}\\ {\left( {\frac{1}{{\sqrt 2 }},\frac{{7\pi }}{4}} \right)}\\ {\left( {1,2\pi } \right)} \end{array}$ Then, we plot the points in the $xy$-plane and join them by smooth curves to obtain the paths.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.