Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 14 - Calculus of Vector-Valued Functions - Chapter Review Exercises - Page 753: 10

Answer

$\frac{d}{{d{\rm{\theta }}}}{\bf{r}}\left( {\cos \theta } \right) = \left( { - \sin \theta , - 2\sin \theta , - \sin 2\theta } \right)$

Work Step by Step

We have ${\bf{r}}\left( s \right) = \left( {s,2s,{s^2}} \right)$. So, ${\bf{r}}\left( {\cos \theta } \right) = \left( {\cos \theta ,2\cos \theta ,{{\cos }^2}\theta } \right)$. Thus, $\frac{d}{{d{\rm{\theta }}}}{\bf{r}}\left( {\cos \theta } \right) = \left( { - \sin \theta , - 2\sin \theta , - 2\cos \theta \sin \theta } \right)$ $\frac{d}{{d{\rm{\theta }}}}{\bf{r}}\left( {\cos \theta } \right) = \left( { - \sin \theta , - 2\sin \theta , - \sin 2\theta } \right)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.