Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 14 - Calculus of Vector-Valued Functions - Chapter Review Exercises - Page 753: 22

Answer

The length of the path: $s = \mathop \smallint \limits_1^2 \sqrt {\frac{1}{{{t^2}}} + 1 + {{\rm{e}}^{2t}}} {\rm{d}}t$ $s \simeq 4.85$

Work Step by Step

We have ${\bf{r}}\left( t \right) = \left( {\ln t,t,{{\rm{e}}^t}} \right)$ for $1 \le t \le 2$. So, ${\bf{r}}'\left( t \right) = \left( {\frac{1}{t},1,{{\rm{e}}^t}} \right)$ $||{\bf{r}}'\left( t \right)|| = \sqrt {\left( {\frac{1}{t},1,{{\rm{e}}^t}} \right)\cdot\left( {\frac{1}{t},1,{{\rm{e}}^t}} \right)} $ $ = \sqrt {\frac{1}{{{t^2}}} + 1 + {{\rm{e}}^{2t}}} $ By Theorem 1 of Section 14.3, the length of the path is given by $s = \mathop \smallint \limits_1^2 ||{\bf{r}}'\left( t \right)||{\rm{d}}t$ $s = \mathop \smallint \limits_1^2 \sqrt {\frac{1}{{{t^2}}} + 1 + {{\rm{e}}^{2t}}} {\rm{d}}t$ Using a computer algebra system we compute the definite integral and obtain $s \simeq 4.847$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.