Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 14 - Calculus of Vector-Valued Functions - Chapter Review Exercises - Page 753: 18

Answer

${\bf{r}}\left( t \right) = \left( {{{\rm{e}}^{ - t}},2{{\rm{e}}^{ - t}}} \right)$

Work Step by Step

We have ${\bf{r}}\left( t \right) = \left( {x\left( t \right),y\left( t \right)} \right)$. So, ${\bf{r}}'\left( t \right) = \left( {x'\left( t \right),y'\left( t \right)} \right)$. The requirement is ${\bf{r}}'\left( t \right) = - {\bf{r}}\left( t \right)$. So, $\left( {x'\left( t \right),y'\left( t \right)} \right) = - \left( {x\left( t \right),y\left( t \right)} \right)$ In component forms, we get $x'\left( t \right) = - x\left( t \right)$ ${\ \ }$ and ${\ \ }$ $y'\left( t \right) = - y\left( t \right)$ Ignoring the $t$ parameter for convenience, we have $\frac{{dx}}{{dt}} = - x$ ${\ \ }$ and ${\ \ }$ $\frac{{dy}}{{dt}} = - y$ $\frac{{dx}}{x} = - dt$ ${\ \ }$ and ${\ \ }$ $\frac{{dy}}{y} = - dt$ Integrating gives $\smallint \frac{1}{x}{\rm{d}}x = - \smallint {\rm{d}}t$ ${\ \ }$ and ${\ \ }$ $\smallint \frac{1}{y}{\rm{d}}y = - \smallint {\rm{d}}t$ $\ln x = - t + {x_0}$ ${\ \ }$ and ${\ \ }$ $\ln y = - t + {y_0}$ At $t=0$, we have ${\bf{r}}\left( 0 \right) = \left( {1,2} \right)$. So, ${x_0} = \ln 1 = 0$ ${\ \ }$ and ${\ \ }$ ${y_0} = \ln 2$ Thus, $\ln x = - t$ ${\ \ }$ and ${\ \ }$ $\ln y = - t + \ln 2$ $x = {{\rm{e}}^{ - t}}$ ${\ \ }$ and ${\ \ }$ $y = {{\rm{e}}^{ - t + \ln 2}} = 2{{\rm{e}}^{ - t}}$ Hence, ${\bf{r}}\left( t \right) = \left( {{{\rm{e}}^{ - t}},2{{\rm{e}}^{ - t}}} \right)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.