Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 3 - Applications of Differentiation - 3.3 Exercises - Page 183: 8

Answer

$y$ is increasing on $(-\infty, 0)$ and $(1, \infty)$ , and decreasing on $(0,1/2)$ and $(1/2, 1).$

Work Step by Step

From the graph, $y$ is increasing on $(-\infty, 0)$ and $(1, \infty)$ , and decreasing on $(0,1/2)$ and $(1/2, 1).$ Analytically, $y=\displaystyle \frac{x^{2}}{2x-1},$ defined everywhere, except for x=1/2 $y^{\prime}=\displaystyle \frac{(2x-1)2x-x^{2}(2)}{(2x-1)^{2}}$ $=\displaystyle \frac{2x^{2}-2x}{(2x-1)^{2}}$ $=\displaystyle \frac{2x(x-1)}{(2x-1)^{2}}$, differentiable everywhere except for x=1/2 Critical numbers: $x=0,1$ Discontinuity: $x=1/2$ $\left[\begin{array}{lllll} Interval & (-\infty,0) & (0,1/2) & (1/2,1) & (1,\infty)\\ \text{test point} & -1 & 0.1 & 0.6 & 2\\ f^{\prime}(\text{test point}) & 0.44444 & -0.28125 & -12 & 0.44444\\ \text{sign} & + & - & - & +\\ & \nearrow & \searrow & \searrow & \nearrow \end{array}\right]$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.