Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 3 - Applications of Differentiation - 3.3 Exercises - Page 183: 22

Answer

(a) Critical numbers: $x=0,4$ (b) Increasing on: $(-\infty, 0), (4, \infty)$ Decreasing on: $(0,4)$ (c) Relative maximum: $(0,15)$ Relative minimum: $(4, -17)$ (d) See image

Work Step by Step

(a) $f(x)=x^{3}-6x^{2}+15$ $f^{\prime}(x)=3x^{2}-12x=3x(x-4)$ $3x(x-4)=0$ Critical numbers: $x=0,4$ (b) $\left[\begin{array}{llll} Interval & (-\infty, 0) & (0,4) & (4, \infty)\\ \text{test point} & -1 & 1 & 5\\ f^{\prime}(\text{test point}) & 15 & -9 & 15\\ \text{sign} & + & - & +\\ & \nearrow & \searrow & \nearrow \end{array}\right]$ Increasing on: $(-\infty, 0), (4, \infty)$ Decreasing on: $(0,4)$ (c) From the table in part b, f has a relative maximum at $x=0,\qquad f(0)=15$ f has a relative minimum at $x=4,\qquad f(1)=-17$ Relative maximum: $(0,15)$ Relative minimum: $(4, -17)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.