Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 3 - Applications of Differentiation - 3.3 Exercises - Page 183: 21

Answer

(a) Critical numbers: $x=-2,1$ (b) Increasing on: $(-\infty, -2), (1, \infty)$ Decreasing on: $(-2,1)$ (c) Relative maximum: $(-2,20)$ Relative minimum: $(1, -7)$ (d) See image

Work Step by Step

(a) $f(x)=2x^{3}+3x^{2}-12x$ $f^{\prime}(x)=6x^{2}+6x-12=6(x+2)(x-1)$ $6(x+2)(x-1)=0$ Critical numbers: $x=-2,1$ (b) $\left[\begin{array}{llll} Interval & (-\infty, -2) & (-2,1) & (1, \infty)\\ \text{test point} & -3 & 0 & 2\\ f^{\prime}(\text{test point}) & 24 & -12 & 24\\ \text{sign} & + & - & +\\ & \nearrow & \searrow & \nearrow \end{array}\right]$ Increasing on: $(-\infty, -2), (1, \infty)$ Decreasing on: $(-2,1)$ (c) From the table in part b, f has a relative maximum at $x=-2,\qquad f(-2)=20$ f has a relative minimum at $x=-1,\qquad f(1)=-7$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.