Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 3 - Applications of Differentiation - 3.3 Exercises - Page 183: 18

Answer

(a) Critical number: $x=-3$ (b) Decreasing on: $(-\infty, -3)$ Increasing on: $(-3, \infty)$ (c) Relative minimum: $(-3,1)$ (d) See image

Work Step by Step

(a) $f(x)=x^{2}+6x+10$ $f^{\prime}(x)=2x+6$ $2x+6=0$ $2x=-6$ Critical number: $x=-3$ (b) $\left[\begin{array}{lll} Interval & (-\infty, -3) & (3, \infty)\\ \text{test point} & -4 & 4\\ f^{\prime}(\text{test point}) & -2 & 14\\ \text{sign} & - & +\\ & \searrow & \nearrow \end{array}\right]$ Decreasing on: $(-\infty, -3)$ Increasing on: $(-3, \infty)$ (c) From the table in part b, f has a relative minimum at $x=-3$ $f(-3)=(-3)^{2}+6(-3)+10=1$ Relative minimum: $(-3,1)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.