Answer
\[\begin{align}
& \text{The function is increasing on: } \\
& \left( 0,\frac{\pi }{2} \right),\left( \frac{7\pi }{6},\frac{3\pi }{2} \right),\left( \frac{11\pi }{6},2\pi \right) \\
& \text{The function is decreasing on: } \\
& \left( \frac{\pi }{2},\frac{7\pi }{6} \right),\left( \frac{3\pi }{2},\frac{11\pi }{6} \right) \\
\end{align}\]
Work Step by Step
\[\begin{align}
& f\left( x \right)={{\sin }^{2}}x+\sin x \\
& \left( \text{a} \right)\text{Calculating the first derivative} \\
& f'\left( x \right)=\frac{d}{dx}\left[ {{\sin }^{2}}x+\sin x \right] \\
& f'\left( x \right)=2\sin x\cos x+\cos x \\
& \text{Calculating the critical points}\text{, set }f'\left( x \right)=0 \\
& 2\sin x\cos x+\cos x=0 \\
& \cos x\left( 2\sin x+1 \right)=0 \\
& \cos x=0,\text{ }2\sin x+1=0 \\
& \text{Solving for the interval }\left( 0,2\pi \right)\text{ we obtain the critical numbers} \\
& x=\frac{\pi }{2},\text{ }x=\frac{7\pi }{6},\text{ }x=\frac{3\pi }{2},\text{ }x=\frac{11\pi }{6} \\
& \text{Set the intervals:} \\
& \left( 0,\frac{\pi }{2} \right),\left( \frac{\pi }{2},\frac{7\pi }{6} \right),\left( \frac{7\pi }{6},\frac{3\pi }{2} \right),\left( \frac{3\pi }{2},\frac{11\pi }{6} \right),\left( \frac{11\pi }{6},2\pi \right) \\
& \\
& \text{Making a table of values }\\
& \begin{matrix}
\text{Interval} & \text{Test Value} & \text{Sign of }f'\left( x \right) & \text{Conclusion} \\
\left( 0,\frac{\pi }{2} \right) & \frac{\pi }{4} & >0 & \text{Increasing} \\
\left( \frac{\pi }{2},\frac{7\pi }{6} \right) & \frac{5\pi }{6} & <0 & \text{Decreasing} \\
\left( \frac{7\pi }{6},\frac{3\pi }{2} \right) & \frac{4\pi }{3} & >0 & \text{Increasing} \\
\left( \frac{3\pi }{2},\frac{11\pi }{6} \right) & \frac{5\pi }{3} & <0 & \text{Decreasing} \\
\left( \frac{11\pi }{6},2\pi \right) & \frac{23\pi }{12} & >0 & \text{Increasing} \\
\end{matrix} \\
& \\
& \text{The function is increasing on: } \\
& \left( 0,\frac{\pi }{2} \right),\left( \frac{7\pi }{6},\frac{3\pi }{2} \right),\left( \frac{11\pi }{6},2\pi \right) \\
& \text{The function is decreasing on: } \\
& \left( \frac{\pi }{2},\frac{7\pi }{6} \right),\left( \frac{3\pi }{2},\frac{11\pi }{6} \right) \\
& \\
& *f'\left( x \right)\text{ changes from positive to negative at }x=\frac{\pi }{2},\text{ } \\
& \text{then }f\left( x \right)\text{ has a relative maximum at }\left( \frac{\pi }{2},f\left( \frac{\pi }{2} \right) \right) \\
& f\left( \frac{\pi }{4} \right)=2 \\
& *f'\left( x \right)\text{ changes from negative to positive at }x=\frac{7\pi }{6},\text{ } \\
& \text{then }f\left( x \right)\text{ has a relative minimum at }\left( \frac{7\pi }{6},f\left( \frac{7\pi }{6} \right) \right) \\
& f\left( \frac{7\pi }{6} \right)=-\frac{1}{4} \\
& *f'\left( x \right)\text{ changes from positive to negative at }x=\frac{3\pi }{2},\text{ } \\
& \text{then }f\left( x \right)\text{ has a relative maximum at }\left( \frac{3\pi }{2},f\left( \frac{3\pi }{2} \right) \right) \\
& f\left( \frac{3\pi }{2} \right)=0 \\
& *f'\left( x \right)\text{ changes from negative to positive at }x=\frac{11\pi }{6}, \\
& \text{then }f\left( x \right)\text{has a relative minimum at }\left( \frac{11\pi }{6},f\left( \frac{11\pi }{6} \right) \right) \\
& f\left( \frac{11\pi }{6} \right)=-\frac{1}{4} \\
& \\
& \left( \text{c} \right)\left( \text{graph} \right) \\
\end{align}\]