Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 3 - Applications of Differentiation - 3.3 Exercises - Page 183: 37

Answer

\[\begin{align} & \left( \text{a} \right)\text{ }x=0 \\ & \left( \text{b} \right)\text{Increasing on}\left( -\infty ,0 \right),\text{ decreasing on }\left( 0,\infty \right) \\ & \left( \text{c} \right)\text{Relative maximum: }\left( 0,4 \right) \\ \end{align}\]

Work Step by Step

\[\begin{align} & \text{Let }f\left( x \right)=\left\{ \begin{matrix} 4-{{x}^{2}},\text{ }x\le 0 \\ -2x,\text{ }x>0 \\ \end{matrix} \right. \\ & \left( \text{a} \right) \\ & \text{Differentiate } \\ & f'\left( x \right)=\left\{ \begin{matrix} \frac{d}{dx}\left[ 4-{{x}^{2}} \right],\text{ }x\le 0 \\ \frac{d}{dx}\left[ -2x \right],\text{ }x>0 \\ \end{matrix} \right. \\ & f'\left( x \right)=\left\{ \begin{matrix} -2x,\text{ }x\le 0 \\ -2,\text{ }x>0 \\ \end{matrix} \right. \\ & f'\left( x \right)=0 \\ & -2x=0\to x=0 \\ & \text{We obtain the critical point }x=0 \\ & \text{Set the intervals }\left( -\infty ,0 \right),\left( 0,\infty \right) \\ & \\ & \left( \text{b} \right)\text{Making a table of values }\left( \text{See examples on page 180 } \right) \\ & \begin{matrix} \text{Interval} & \left( -\infty ,0 \right) & \left( 0,\infty \right) \\ \text{Test Value} & x=-1 & x=1 \\ \text{Sign of }f'\left( x \right) & \text{ }f'\left( -1 \right)=2>0 & \text{ }f'\left( 1 \right)=-2<0 \\ \text{Conclusion} & \text{Increasing} & \text{Decreasing} \\ \end{matrix} \\ & \\ & \text{By Theorem 3}\text{.6} \\ & f'\left( x \right)\text{ changes from positive to negative at }x=0,\text{ then }f\left( x \right) \\ & \text{has a relative maximum at }\left( 0,f\left( 0 \right) \right) \\ & \text{Let }f\left( x \right)=\left\{ \begin{matrix} 4-{{x}^{2}},\text{ }x\le 0 \\ -2x,\text{ }x>0 \\ \end{matrix} \right. \\ & f\left( 0 \right)=4-{{\left( 0 \right)}^{2}} \\ & f\left( 0 \right)=4 \\ & \text{Relative maximum: }\left( 0,4 \right) \\ \end{align}\]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.