Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 3 - Applications of Differentiation - 3.3 Exercises - Page 183: 11

Answer

Decreasing on: $(-4, -2\sqrt{2}), (2\sqrt{2},4)$ Increasing on: $(-2\sqrt{2},2\sqrt{2})$

Work Step by Step

$y=x\sqrt{16-x^{2}}$ , defined on $[-4, 4]$ $y^{\prime}=\displaystyle \frac{-2(x^{2}-8)}{\sqrt{16-x^{2}}}$, defined on $(-4, 4)$ $=\displaystyle \frac{-2(x-2\sqrt{2})(x+2\sqrt{2})}{\sqrt{16-x^{2}}}$ Critical numbers: $x=\pm 2\sqrt{2}$ $\left[\begin{array}{llll} Interval & (-4,-2\sqrt{2}) & (-2\sqrt{2},2\sqrt{2}) & (2\sqrt{2},\infty)\\ \text{test point} & -3 & 0 & 3\\ f^{\prime}(\text{test point}) & -0.7559 & 4 & -0.7559\\ \text{sign} & - & + & -\\ & \searrow & \nearrow & \searrow \end{array}\right]$ Decreasing on: $(-4, -2\sqrt{2}), (2\sqrt{2},4)$ Increasing on: $(-2\sqrt{2},2\sqrt{2})$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.