Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 3 - Applications of Differentiation - 3.3 Exercises - Page 183: 24

Answer

(a) Critical numbers: $x=-2,0$ (b) Increasing on: $(-\infty, -2), (0, \infty)$ Decreasing on: $(-2,0)$ (c) Relative maximum: $(-2,0)$ Relative minimum: $(0, -4)$ (d) See image

Work Step by Step

(a) $f(x)=(x+2)^{2}(x-1)$ $f^{\prime}(x)=2(x+2)(x-1)+(x+2)^{2}(1)$ $=(x+2)[2(x-1)+(x+2)]$ $=(x+2)[2x-2+x+2]$ $=3x(x+2)$ $3x(x+2)=0$ Critical numbers: $x=-2,0$ (b) $\left[\begin{array}{llll} Interval & (-\infty, -2) & (-2,0) & (0, \infty)\\ \text{test point} & -3 & -1 & 1\\ f^{\prime}(\text{test point}) & 9 & -3 & 9\\ \text{sign} & + & - & +\\ & \nearrow & \searrow & \nearrow \end{array}\right] $ Increasing on: $(-\infty, -2), (0, \infty)$ Decreasing on: $(-2,0)$ (c) From the table in part b, f has a relative maximum at $x=-2,\qquad f(-2)=0$ f has a relative minimum at $x=0,\qquad f(0)=-4$ Relative maximum: $(-2,0)$ Relative minimum: $(0, -4)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.