Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 3 - Applications of Differentiation - 3.3 Exercises - Page 183: 6

Answer

$f$ is decreasing on $(-\infty, -1)$ and $(0,1)$ , and increasing on $(-1,0)$ and $(1, \infty)$ .

Work Step by Step

From the graph, $f$ is decreasing on $(-\infty, -1)$ and $(0,1)$ , and increasing on $(-1,0)$ and $(1, \infty)$ . Analytically, $f(x)=x^{4}-2x^{2},$ defined everywhere, $f^{\prime}(x)=4x^{3}-4x$, differentiable everywhere $f^{\prime}(x)=0$ $4x^{3}-4x=0$ $4x(x-1)(x+1)=0$ . Critical numbers: $x=0, \pm 1.$ $\left[\begin{array}{lllll} Interval & (-\infty,-1) & (-1,0) & (0,1) & (1,\infty)\\ \text{test point} & -2 & -0.5 & 0.5 & 2\\ f^{\prime}(\text{test point}) & 4(-8)-4(-2) & 4(-1/8)-4(-1/2) & 4(1/8)-4(1/2) & 4(8)-2(2)\\ \text{sign} & - & + & - & +\\ & \searrow & \nearrow & \searrow & \nearrow \end{array}\right]$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.