Answer
\[\begin{align}
& f\left( x \right)\text{ has a relative minimum at }\left( \frac{3\pi }{2},-1 \right) \\
& f\left( x \right)\text{ has a relative maximum at }\left( \frac{\pi }{2},1 \right) \\
\end{align}\]
Work Step by Step
\[\begin{align}
& f\left( x \right)=\frac{\sin x}{1+{{\cos }^{2}}x} \\
& \\
& \left( \text{a} \right)\text{Calculating the first derivative} \\
& f'\left( x \right)=\frac{d}{dx}\left[ \frac{\sin x}{1+{{\cos }^{2}}x} \right] \\
& f'\left( x \right)=\frac{\left( 1+{{\cos }^{2}}x \right)\left( \cos x \right)-\sin x\left( 2\cos x \right)\left( -\sin x \right)}{{{\left( 1+{{\cos }^{2}}x \right)}^{2}}} \\
& f'\left( x \right)=\frac{\cos x+{{\cos }^{3}}x+2{{\sin }^{2}}x\cos x}{{{\left( 1+{{\cos }^{2}}x \right)}^{2}}} \\
& f'\left( x \right)=\frac{\cos x\left( 2{{\sin }^{2}}x+1+{{\cos }^{2}}x \right)}{{{\left( 1+{{\cos }^{2}}x \right)}^{2}}} \\
& \text{Calculating the critical points}\text{, set }f'\left( x \right)=0 \\
& \cos x=0 \\
& \text{Solving for the interval }\left( 0,2\pi \right)\text{ we obtain the critical numbers} \\
& 2{{\sin }^{2}}x+1+{{\cos }^{2}}x=0,\text{ no real solutions}\text{, then} \\
& \cos x=0 \\
& x=\frac{\pi }{2},\text{ }x=\frac{3\pi }{2} \\
& \text{Set the intervals:} \\
& \left( 0,\frac{\pi }{2} \right),\left( \frac{\pi }{2},\frac{3\pi }{2} \right),\left( \frac{3\pi }{2},2\pi \right) \\
& \\
& \text{Making a table of values } \\
& \begin{matrix}
\text{Interval} & \text{Test Value} & \text{Sign of }f'\left( x \right) & \text{Conclusion} \\
\left( 0,\frac{\pi }{2} \right) & x=\frac{\pi }{4} & >0 & \text{Increasing} \\
\left( \frac{\pi }{2},\frac{3\pi }{2} \right) & x=\pi & <0 & \text{Decreasing} \\
\left( \frac{3\pi }{2},2\pi \right) & x=\frac{7\pi }{4} & >0 & \text{Increasing} \\
\end{matrix} \\
& \\
& \text{Inscreasing on }\left( 0,\frac{\pi }{2} \right)\text{ and }\left( \frac{3\pi }{2},2\pi \right) \\
& \text{Decreasing on }\left( \frac{\pi }{2},\frac{3\pi }{2} \right) \\
& \\
& *f'\left( x \right)\text{ changes from positive to negative at }x=\frac{\pi }{2},\text{ then } \\
& f\left( x \right)\text{ has a relative maximum at }x=\frac{\pi }{2} \\
& f\left( \frac{\pi }{2} \right)=1 \\
& \\
& *f'\left( x \right)\text{ changes from negative to positive at }x=\frac{3\pi }{2},\text{ then } \\
& f\left( x \right)\text{ has a relative minimum at }x=\frac{3\pi }{2}\text{ } \\
& f\left( \frac{3\pi }{2} \right)=-1 \\
& \\
& \left( \text{c} \right)\text{Graph} \\
\end{align}\]