Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 3 - Applications of Differentiation - 3.3 Exercises - Page 183: 25

Answer

$$ f(x)=\frac{x^{5}-5 x}{5} $$ (a) The critical numbers of $f$: $x=\pm1$. (b) $f$ is increasing on the intervals :$ (-\infty\lt x\lt -1) , (1\lt x \lt \infty)$ and decreasing on the interval : $ (-1\lt x \lt 1)$ (c) Relative maximum: $ (-1, \frac{4}{5})$ Relative minimum: $ (1, \frac{4}{5})$

Work Step by Step

$$ f(x)=\frac{x^{5}-5 x}{5} $$ Note that $f $ is differentiable on the entire real number line and the derivative of $f$ is $$ f^{\prime}(x)=x^{4}-1 $$ To determine the critical numbers of $f $ set $f^{\prime}(x)$ equal to zero. $$ f^{\prime}(x)=x^{4}-1=(x^{2}-1)(x^{2}+1)=0 $$ So, (a) The critical numbers of $f$: $x=\pm1$. Because there are no points for which $f^{\prime}(x)$ does not exist, you can conclude that $x=1$and $x=-1$ are the only critical numbers. The table summarizes the testing of the three intervals determined by these two critical numbers. $$ \begin{array}{|c|c|c|c|}\hline \text { Interval } & {-\infty\lt x\lt -1} & {-1\lt x \lt 1} & {1\lt x \lt \infty} \\ \hline \text { Test Value } & {x=-2} & {x=0} & {x=2} \\ \hline \text { Sign of } f^{\prime}(x) & {f^{\prime}(2) =15\gt 0} & {f^{\prime}\left(0\right)=-1\lt 0} & {f^{\prime}(2)=15 \gt 0} \\ \hline \text { Conclusion } & {\text { Increasing }} & {\text { Decreasing }} & {\text { Increasing }} \\ \hline\end{array} $$ (b) $f$ is increasing on the intervals :$ (-\infty\lt x\lt -1) , (1\lt x \lt \infty)$ and decreasing on the interval : $ (-1\lt x \lt 1)$ (c) Relative maximum: $ (-1, \frac{4}{5})$ Relative minimum: $ (1, \frac{4}{5})$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.