Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 3 - Applications of Differentiation - 3.3 Exercises - Page 183: 10

Answer

Decreasing on: $(-\infty, -2), (2, \infty)$ Increasing on: $(-2,2)$

Work Step by Step

$h(x)=12x-x^{3}$, defined everywherre, continuous $h^{\prime}(x)=12-3x^{2}$, differentiable everywhere $=3(4-x^{2})$ $=3(2-x)(2+x)$ $3(2-x)(2+x) =0$ Critical numbers: $x=\pm 2$ $\left[\begin{array}{llll} Interval & (-\infty,-2) & (-2,2) & (2,\infty)\\ \text{test point} & -3 & 0 & 3\\ f^{\prime}(\text{test point}) & -15 & 12 & -15\\ \text{sign} & - & + & -\\ & \searrow & \nearrow & \searrow \end{array}\right]$ Decreasing on: $(-\infty, -2), (2, \infty)$ Increasing on: $(-2,2)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.