Answer
\[\begin{align}
& \left( \text{a} \right)x=0,\text{ }x=1 \\
& \left( \text{b} \right)\text{Decreasing on: }\left( -\infty ,0 \right)\text{ and }\left( 1,\infty \right)\text{ } \\
& \text{Increasing on: }\left( 0,1 \right),\text{ } \\
& \left( \text{c} \right)\text{relative maximum}\left( 1,1 \right) \\
& \text{ relative minimum}\left( 0,1 \right) \\
& \\
\end{align}\]
Work Step by Step
\[\begin{align}
& \text{Let }f\left( x \right)=\left\{ \begin{matrix}
-{{x}^{3}}+1,\text{ }x\le 0 \\
-{{x}^{2}}+2x,\text{ }x>0 \\
\end{matrix} \right. \\
& \left( \text{a} \right) \\
& \text{Differentiate } \\
& f'\left( x \right)=\left\{ \begin{matrix}
\frac{d}{dx}\left[ -{{x}^{3}}+1 \right],\text{ }x\le 0 \\
\frac{d}{dx}\left[ -{{x}^{2}}+2x \right],\text{ }x>0 \\
\end{matrix} \right. \\
& f'\left( x \right)=\left\{ \begin{matrix}
-3{{x}^{2}},\text{ }x\le 0 \\
-2x+2,\text{ }x>0 \\
\end{matrix} \right. \\
& \text{Tthe critical points are: }x=0\text{ and}-2x+2=0 \\
& -2x+2=0 \\
& x=1 \\
& \text{We obtain the critical points }x=0,\text{ and }x=1 \\
& \text{Set the intervals }\left( -\infty ,0 \right),\left( 0,1 \right)\text{ and }\left( 1,\infty \right) \\
& \\
& \left( \text{b} \right) \\
& \text{Making a table of values }\left( \text{See examples on page 180 } \right) \\
& \begin{matrix}
\text{Interval} & \left( -\infty ,0 \right) & \left( 0,1 \right) & \left( 1,\infty \right) \\
\text{Test Value} & x=-1 & x=0.5 & x=2 \\
\text{Sign of }f'\left( x \right) & \text{ }f'\left( -1 \right)<0 & \text{ }f'\left( 0.5 \right)>0 & \text{ }f'\left( 2 \right)<0 \\
\text{Conclusion} & \text{Decreasing} & \text{Increasing} & \text{Decreasing} \\
\end{matrix} \\
& \\
& \text{Therefore} \\
& f\left( x \right)\text{has a relative minimum at }\left( 0,f\left( 0 \right) \right) \\
& f\left( 0 \right)=-{{\left( 0 \right)}^{3}}+1=1\to \left( 0,1 \right) \\
& f\left( x \right)\text{has a relative maximum at }\left( 1,f\left( 1 \right) \right) \\
& f\left( 1 \right)=-{{\left( 1 \right)}^{2}}+2\left( 1 \right)=1\to \left( 1,1 \right) \\
& \\
& \left( \text{a} \right)x=0,\text{ }x=1 \\
& \left( \text{b} \right)\text{Decreasing on: }\left( -\infty ,0 \right)\text{ and }\left( 1,\infty \right)\text{ } \\
& \text{Increasing on: }\left( 0,1 \right),\text{ } \\
& \left( \text{c} \right)\text{relative maximum}\left( 1,1 \right) \\
& \text{ relative minimum}\left( 0,1 \right) \\
\end{align}\]