Answer
$$\eqalign{
& \left( {\text{a}} \right){\text{ }}x = 5 \cr
& \left( {\text{b}} \right){\text{Increasing on}}\left( { - \infty ,5} \right),{\text{ decreasing on }}\left( {5,\infty } \right) \cr
& \left( {\text{c}} \right){\text{Relative maximum: }}\left( {5,5} \right) \cr} $$
Work Step by Step
\[\begin{align}
& f\left( x \right)=5-\left| x-5 \right| \\
& \left( \text{a} \right) \\
& \text{Differentiating} \\
& f\left( x \right)=-\frac{x-5}{\left| x-5 \right|},\text{ or} \\
& \text{Using the definition of the absolute value}\text{, we can write} \\
& \text{the function as} \\
& f\left( x \right)=\left\{ \begin{matrix}
x,\text{ }x<5 \\
-x+10,\text{ }x>5 \\
\end{matrix} \right. \\
& \text{Differentiating} \\
& f'\left( x \right)=\left\{ \begin{matrix}
\frac{d}{dx}\left( x \right),\text{ }x<5 \\
\frac{d}{dx}\left( -x+10 \right),\text{ }x>5 \\
\end{matrix} \right. \\
& f'\left( x \right)=\left\{ \begin{matrix}
1,\text{ }x<5 \\
-1,\text{ }x>5 \\
\end{matrix} \right. \\
& \text{The derivative is not defined at }x=5,\text{ we obtain the critical } \\
& \text{point }x=5 \\
& \text{Set the intervals }\left( -\infty ,5 \right),\left( 5,\infty \right) \\
& \\
& \text{Making a table of values: }\\
& \begin{matrix}
\text{Interval} & \left( -\infty ,5 \right) & \left( 5,\infty \right) \\
\text{Test Value} & x=0 & x=6 \\
\text{Sign of }f'\left( x \right) & \text{ }f'\left( 0 \right)=1>0 & \text{ }f'\left( 1 \right)=-1<0 \\
\text{Conclusion} & \text{Increasing} & \text{Decreasing} \\
\end{matrix} \\
& \\
& \text{By Theorem 3}\text{.6} \\
& f'\left( x \right)\text{ changes from positive to negative at }x=5,\text{ then }f\left( x \right) \\
& \text{has a relative maximum at }\left( 5,f\left( 5 \right) \right) \\
& f\left( 5 \right)=5-\left| 5-5 \right| \\
& f\left( 5 \right)=5 \\
& \text{Relative maximum: }\left( 5,5 \right) \\
\end{align}\]