Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.1 An Overview Of Integration Methods - Exercises Set 7.1 - Page 490: 19

Answer

$$\frac{2}{{\ln 3}}{3^{ - \sqrt x }} + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{{dx}}{{\sqrt x {3^{\sqrt x }}}}} \cr & {\text{write with negative exponent}} \cr & = \int {\frac{{{3^{ - \sqrt x }}dx}}{{\sqrt x }}} \cr & {\text{substitute }}u = - \sqrt x \cr & du = - \frac{1}{{2\sqrt x }}dx \cr & - 2du = \frac{1}{{\sqrt x }}dx \cr & = \int {{3^{ - \sqrt x }}\frac{{dx}}{{\sqrt x }}} \cr & = \int {{3^u}\left( { - 2du} \right)} \cr & = - 2\int {{3^u}} du \cr & {\text{find the antiderivative}} \cr & = 2\left( {\frac{{{3^u}}}{{\ln 3}}} \right) + C \cr & = \frac{2}{{\ln 3}}{3^u} + C \cr & {\text{write in terms of }}x,{\text{ replace }}u = - \sqrt x \cr & = \frac{2}{{\ln 3}}{3^{ - \sqrt x }} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.