Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.1 An Overview Of Integration Methods - Exercises Set 7.1 - Page 490: 1

Answer

$$ - \frac{1}{8}{\left( {4 - 2x} \right)^4} + C$$

Work Step by Step

$$\eqalign{ & \int {{{\left( {4 - 2x} \right)}^3}} dx \cr & {\text{substitute }}u = 4 - 2x,{\text{ }}du = - 2dx \cr & \int {{{\left( {4 - 2x} \right)}^3}} dx = \int {{u^3}} \left( { - \frac{1}{2}du} \right) \cr & = - \frac{1}{2}\int {{u^3}} du \cr & {\text{power rule}} \cr & - \frac{1}{2}\left( {\frac{{{u^4}}}{4}} \right) + C \cr & = - \frac{1}{8}{u^4} + C \cr & {\text{write in terms of }}x \cr & = - \frac{1}{8}{\left( {4 - 2x} \right)^4} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.