Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.1 An Overview Of Integration Methods - Exercises Set 7.1 - Page 490: 3

Answer

$$\frac{1}{2}\tan \left( {{x^2}} \right) + C$$

Work Step by Step

$$\eqalign{ & {\text{substitute }}u = {x^2},{\text{ }}du = 2xdx \cr & \int {{{\sec }^2}} \left( {{x^2}} \right)xdx \cr & = \int {{{\sec }^2}} u\left( {\frac{1}{2}du} \right) \cr & = \frac{1}{2}\int {{{\sec }^2}u} du \cr & {\text{find the antiderivative }} \cr & = \frac{1}{2}\tan u + C \cr & {\text{write in terms of }}x \cr & = \frac{1}{2}\tan \left( {{x^2}} \right) + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.