Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.1 An Overview Of Integration Methods - Exercises Set 7.1 - Page 490: 10

Answer

$$\frac{1}{2}{\sin ^{ - 1}}{x^2} + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{x}{{\sqrt {1 - {x^4}} }}} dx \cr & {\text{substitute }}u = {x^2},{\text{ }}du = 2xdx \cr & \int {\frac{x}{{\sqrt {1 - {x^4}} }}} dx = \int {\frac{{\left( {1/2} \right)du}}{{\sqrt {1 - {u^2}} }}} \cr & = \frac{1}{2}\int {\frac{{du}}{{\sqrt {1 - {u^2}} }}} \cr & {\text{find the antiderivative using }}\int {\frac{{du}}{{\sqrt {{a^2} - {u^2}} }}} = {\sin ^{ - 1}}\frac{u}{a} + C{\text{ }}\left( {{\text{see page 468}}} \right) \cr & = \frac{1}{2}{\sin ^{ - 1}}u + C \cr & {\text{write in terms of }}x,{\text{ replace }}u = {x^2} \cr & = \frac{1}{2}{\sin ^{ - 1}}{x^2} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.